
Criterion C
Overall Structure of Logic

Normalization

First Normal Form
Student First, Student Last, Student Email, Current Grade, Current School,
Siblings, How They Learned About Us, Comments, Internal Comments, Course
1, Course 2, Course 3, Course 4, Semester, Paid, Payment Date, Payment Method

Third Normal Form
Student: Student ID, Student First, Student Last, Student Email, Current Grade,
Current School, Siblings, How They Learned About Us, Comments, Internal
Comments
Course: Course ID, Course Name, Teacher ID, Course Subject, Course Year,
Course Semester, Course Time, Course Cost
Enrollment: Enrollment ID, Student ID, Course ID, Paid
Payment: Payment ID, Student ID, Paid Amount, Payment Date, Payment Method
Teacher: Teacher ID, Teacher First, Teacher Last, Teacher Email

Entity Relationship Diagram

Figure 1: Entity Relationship Diagram

Table Relationship Diagram

Figure 2: Table Relationship Diagram

Overall Structure of UI

Figure 3: User Interface Structure

Design of Individual Features
Adding Records (Student, Teacher, Enrollment, Course, Payment)

The feature of adding records to all tables is necessary for a smooth user experience. It
prevents users from needing to directly access tables to add or change information and
creates a more appealing view for students, teachers, and administrators. To implement

this feature, I used forms allowing users to input all necessary information to add a new
record to a given table, then included a button at the bottom of each form to have a layer
of “confirmation” as additions or edits are made to the data. This feature can be seen in
the “Course Creation” form, which adds records to the Course table (Figure 4). This is
one of five forms total in this database management system that adds records to a table.
Once the administrator fills in all course information and clicks “Add Course”, a new
course will be added to the Course Table. In Figure 5, it can be seen that the course
information is successfully added to the Course table.

Figure 4: Course Creation (Adding Records)

Figure 5: Course Table (Adding Records)

The presence of a button also fulfills the idea of protection against data loss; there is an
extra “confirmation” before data is added or changed. This makes this implementation of
this feature ideal. Figure 6 highlights the logic behind the functionality of the button,
where the command to add a new record and display an error message if there is a
mistake or incomplete information.

Figure 6: On Click of “Add Course” Button

Course Catalog

The course catalog feature aims to display all courses offered by APLUS Learning
Center, organized by semester. It is necessary as a tool for students to view all the
offerings that APLUS has in their process of enrolling in classes. The “Course Catalog”
report uses the “Course Query” query as a source, utilizing the concatenated Course Year
and Course Semester as category headings and listing Course Names underneath their
respective semesters. The SQL code for the “Course Query” query is found in Figure 7.

Figure 7: Course Query (SQL Code)

Figure 8: Course Catalog Report

 Course History

The course history feature aims to display the course history of a selected student,
organized by semester. This is a necessary feature as it addresses a client request (success
criterion) to be able to view the history of a student’s classes in an intuitively generated
report that is easy to access. Because of its simple design, it allows for a birds-eye
overview of a student’s history at APLUS. The report is generated through a form and a
query. A form where users can select a student (Figure 9). This feeds into the “Course
History” query, which generates the selected student’s enrollment information from the
enrollment table: Course Semester, Course Name, Student ID, Student First, and Student
Last. Figure 10 highlights the logic of this segment in SQL form. This is the most
appropriate technique because it links the form with the report seamlessly through a
query acting as the “middle man”.

Figure 9: Course History Form

Figure 10: Course History Query (SQL Code)

Upon clicking the “Course History” button, a report is opened which sources its data
from the “Course History” query. This report categorizes courses by semester and
displays the selected student’s first and last name at the top of the screen. A sample report
is seen in Figure 11.

Figure 11: Course History Report

Enrollment Summary

The enrollment summary feature aims to display the number of students enrolled in each
class in the current year. The report displayed simply shows the number of enrolled
students next to the name of the class, and highlights classes with more than four people
in green, and classes with less than four people in red. This allows for administrators to
conveniently access an at-a-glance view of how many classes are qualified to run. The
report is generated using data from the “Enrollment Summary” query, which calculates
the number of students enrolled in each class from the Course and Enrollment tables. The
SQL code used for this query can be viewed in Figure 12.

Figure 12: Enrollment Summary (SQL Code)

The query also pulls the course names from the “Course Query”, which simplifies the
process of generating the full name of a course. For example, instead of having to type
out the concatenation of the Course Name, Course Semester, Course Year, and Course
Cost, the query sourced this text from a pre-existing query. The final report is shown in
Figure 13. Because this is meant to be an overview, I chose to go directly from a query to
a report (rather than use form input) because the report is meant to show the same
information every time.

Figure 13: Enrollment Summary Report

Invoice

The invoice feature draws directly from the data to generate an invoice for a selected
student, including the cost for each class, discount offered, and total cost. The invoice
also offers a customized and aesthetically pleasing format for both administrators and
students. Most importantly, it fulfills the success criterion of having the ability to easily
generate invoices for a student. Like the Course History Report, the Invoice Report draws
from an Invoice Query, which takes into account a selected student as input from the
“Invoice Generator” form. A screen capture of the “Invoice Generator” form is seen
below in Figure 14. There is a combo box available to select a student, which
automatically runs the Invoice Query, and upon clicking “Generate Invoice”, the Invoice
Report is opened. The logic behind the button’s function can be seen in Figure 15.

Figure 14: Invoice Generator Form

Figure 15: “Generate Invoice” Button Logic

A screen capture of the final report view is shown below in Figure 16. It lists the student
name, along with course names and costs, a discount, and total cost owed.

Figure 16: Invoice Report

Teacher Assignments

The teacher assignments report is generated to list the courses that each teacher is
teaching under their name. Only courses taught in the current year appear in this report so
as to display only relevant information. This report is not only to make it easier for
teachers to view what classes they have been assigned, but also to contain all teacher
assignments in a designated area. This also goes to fulfill the success criterion of having
the ability to easily view teacher assignments. This feature works through a query that
pulls information from the Teacher and Course tables and filters out classes of years other
than the current one. Because this is meant to be an overview, I chose to go directly from
a query to a report (rather than use form input) because the report is meant to show the
same information every time. The design view and SQL view of the logic of the query

can be seen in Figures 17 and 18, respectively. Finally, a view of the Teacher
Assignments Report can be seen in Figure 19.

Figure 17: Teacher Assignments Query Design View

Figure 18: Teacher Assignments Query SQL View

Figure 19: Teacher Assignments Report

